Des traces des trous noirs quantiques de Hawking dans les ondes gravitationnelles ?

Laurent Sacco, Journaliste
1 / 2

Des traces des trous noirs quantiques de Hawking dans les ondes gravitationnelles ?

On ne le répétera sans doute jamais assez mais un trou noir ne se définit ni par sa densité ni par le fait qu’il posséderait une singularité de l’espace-temps en son cœur. Les trous noirs supermassifs possèdent des densités qui peuvent être celle de l’eau ou de l’air, et une théorie quantique de la gravitation supprime très probablement l’effondrement de la matière, de la lumière et finalement, de l’espace-temps lui-même au point de devenir une singularité, tout comme les lois quantiques stoppent l’effondrement des électrons sur les noyaux des atomes malgré l’attraction électrostatique entre ces particules.

Ce qui définit un trou noir de façon rigoureuse — depuis notamment les travaux de Roger Penrose, Stephen Hawking, John Wheeler et d’autres chercheurs des années 1960 —, c’est l’existence d’un horizon des événements clos entourant une région de l’espace. Il existe une formulation très précise de la nature de cet horizon mais, grossièrement, on peut dire que, dans le cadre d’une théorie classique de la gravitation avec un espace-temps courbe (il n’est pas nécessaire de supposer que les équations d’Einstein soient les bonnes équations pour décrire la dynamique de cet espace-temps complètement), un trou noir est une sorte de bulle formée d’une membrane fictive, effective, qui ne laisse passer matière et lumière que dans un seul sens. Une fois dans la bulle, elles ne peuvent plus en sortir car le champ de gravitation nécessiterait qu’un objet physique, particule ou onde, puisse se propager parfois plus vite que la lumière.

On sait que Stephen Hawking, en se basant notamment sur les travaux de Jacob Bekenstein, Yakov Zel’dovich et Alexei Starobinski, a été conduit à découvrir que la mécanique quantique impliquait que les trous noirs, en rotation ou pas, devaient tout de même s’évaporer en perdant leurs masses et leurs moments cinétiques s'ils en avaient. Un trou noir doit, en effet, émettre un rayonnement chaud du type de celui d’un corps noir avec une température...

> Lire la suite sur Futura